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Abstract

The high tropical Andes are rapidly changing due to climate change, leading to strong biotic community, ecosystem, and
landscape transformations. While a wealth of glacier, water resource, and ecosystem-related research exists, an integrated
perspective on the drivers and processes of glacier, landscape, and biota dynamics is currently missing. Here, we address this
gap by presenting an interdisciplinary review that analyzes past, current, and potential future evidence on climate and glacier
driven changes in landscape, ecosystem and biota at different spatial scales. We first review documented glacier changes and
landscape evolution over past decades to millennia and analyze projected future glacier shrinkage until 2100 for two case studies
in the tropical Andes. The effects of climate and glacier change on high Andean biota are then examined from paleoecological
research and comparative gradient analyses to chronosequence and diachronic studies of vegetation dynamics. Our analysis
indicates major twenty-first century landscape transformations with important socioecological implications which can be
grouped into (i) formation of new lakes and drying of existing lakes as glaciers recede, (ii) alteration of hydrological dynamics
in glacier-fed streams and high Andean wetlands, resulting in community composition changes, (iii) upward shifts of species and
formation of new communities in deglaciated forefronts,(iv) potential loss of wetland ecosystems, and (v) eventual loss of alpine
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biota. We advocate strengthening an interdisciplinary research agenda with a strong policy formulation link that enables en-
hanced cross-sectorial cooperation and knowledge sharing, capacity building of relevant stakeholders, and a more active partic-

ipation of both government agencies and social organizations.

Keywords Tropical mountains - Deglaciation - Colonization - High-Andean wetlands - Primary succession - Vegetation dynamics

Introduction

Driven by climate change, the mountain cryosphere is rapidly
changing. The massive decline of mountain glaciers in the last
decades is well documented worldwide (Vaughan et al. 2013;
Zemp et al. 2015), and an increasing amount of studies have
also modeled future glacier changes at global (Radi¢ and
Hock 2011) and regional scales (Salzmann et al. 2012;
Clarke et al. 2015; Kraaijenbrink et al. 2017). Concomitant
with glacial recession, high-mountain landscapes are chang-
ing through (i) the formation and growth of new lakes and
wetlands, and (ii) fragmentation and desiccation of former
lakes due to seasonal disconnection from glacier-fed streams
(Gardelle et al. 2011; Linsbauer et al. 2016; Drenkhan et al.
2018). Glacial recession is also triggering colonization pro-
cesses in the new deglaciated areas (Seimon et al. 2017,
Zimmer et al. 2018) that together with warming and changing
precipitation patterns due to climate change (Buytaert et al.
2011) are modifying species geographic ranges and biota
composition (Seimon et al. 2017; Lamprecht et al. 2018).
This is the case of the tropical Andes, a mountain range that
has been identified as a global hotspot region of cryosphere
change (Vuille et al. 2018), landscape transformation
(Dangles et al. 2017), and enhanced vulnerability of both pop-
ulation (Mark 2008; Bury et al. 2011; Vuille et al. 2018) and
alpine biota (Tovar et al. 2013; Ramirez-Villegas et al. 2014)
to climate change. Deviation from mean annual temperatures
in the tropical Andes above 3000 m above sea level (asl, from
here onwards) in the last 30 years of the twentieth century has
increased at a rate of approximately 0.04 °C year ' (Vuille
et al. 2003).

The tropical high Andean ecosystems are ideal to study the
effects of climate and glacier change on the biota because 99%
of all tropical glaciers are located in the Andes (Kaser 1999),
strong human land-use change is absent in these highlands,
and many species are close to the edge of their bioclimatic
limits (Dangles et al. 2017). Extending from 11° N to 27° S,
the high tropical Andes (>3000 m asl) are the longest and
widest mountain region in the tropics (Fjeldsd and Krabbe
1990; Clapperton and Clapperton 1993). The tropical section
of the Andes spans along 4500 km in a north-south direction
with a prominent precipitation and temperature gradient (Josse
et al. 2011). The northern section (Venezuela, Colombia,
Ecuador) experience a non-seasonal humid climate with short
dry periods and well-distributed rainfall throughout the year
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(Buytaert et al. 2006). In addition, glaciers are generally small-
er in this region than in the south, and alpine ecosystems called
paramos can provide for additional water storage, as their soils
have a remarkable water retention capacity (Buytaert et al.
2011; Harden et al. 2013). The central Andean highlands,
called punas (Pert, Bolivia), are characterized by a noticeable
seasonal climate with a pronounced cold and dry season that
spans from June to September (Rundel and Palma 2000).
Annual rainfall varies from 500 to 1000 mm decreasing from
east to west and north to south. Additionally, mountain gla-
ciers in the central Andes are much larger than their northern
counterparts and act as a buffer against prolonged dry seasons
providing water for ecosystem processes and human uses
(Vuille et al. 2008b).

Although past (paleo) glacier fluctuations and contempo-
rary glacier recession are well studied across the tropical
Andes (Jomelli et al. 2009; Rabatel et al. 2013), landscape
and ecosystem change due to past and future glacier dynamics
have been explored only recently. The emergence of new
lakes and wetlands (Réveillet et al. 2015; Colonia et al.
2017; Schauwecker et al. 2017; Drenkhan et al. 2018), species
range displacement, and colonization of deglaciated areas
(Morueta-Holme et al. 2015; Moret et al. 2016), as well as
ecosystem vegetation shifts and formation of new communi-
ties (Seimon et al. 2007; Seimon et al. 2017), are associated
with glacier dynamics in the tropical Andes. However, there is
limited empirical data and only a few studies address and
interrelate the involved drivers and processes, which limits
our understanding of glacier and biota dynamics.

Besides being recognized as a biodiversity hotspot (i.e., a
region with high endemism and highly threatened species,
sensu Myers et al. (2000); Mittermeier et al. (2011)), the trop-
ical Andes provide key ecosystem services. Both local inhab-
itants and those living in downstream areas with large and
growing urban populations benefit from these services
(Buytaert and De Biévre 2012; Buytaert et al. 2017;
Kinouchi et al. 2019). These include water provision for do-
mestic use, agricultural production and hydropower genera-
tion, carbon accumulation in soils and biomass, flood risk
control, and recreational/cultural values to native populations
(Bradley et al. 2006; Carey et al. 2017). In view of the critical
role Andean ecosystems play for ecosystem service provision
and the preservation of their singular biodiversity, an analyti-
cal framework that integrates cryosphere, ecosystem, and
landscape transformations is highly needed.
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Our aim in this review is to contribute towards the devel-
opment of such a framework by understanding how glacier
change has interacted with biota and ecosystem changes. We
adopt an interdisciplinary perspective, relating past, current
and projected climate, glacier and hydrological change to
transforming landscape elements (e.g., high Andean lake
and wetland systems), and changes in biota composition and
their spatial distribution. First, we review glacier change in the
tropical Andes over a time scale of the past decades to
millennia, to understand long-term landscape evolution, and
then focus on potential future changes. The effect of climate
and glacier change on high Andean biota is then reviewed
through the lens of paleo-ecological, diachronic, and syn-
chronic approaches, in order to develop a more integrated
perspective. We complement this review by looking at two
case studies in the humid inner-tropical northern Andes
(Antisana volcano, 0.48° S; Fig. 1) and the seasonally dry
outer-tropical central Andes (Vilcanota Cordillera, 13.77° S;
Fig. 1). Additionally, the potential of initiatives, such as the
GLORIA-Andes comparative network (Global Observation
Research Initiative in Alpine Environments), is discussed, in
order to consolidate a more integrated long-term perspective.

Climate change impact on tropical Andean
glaciers

Climate change impact during the Quaternary

Through the Quaternary (~the last 2.5 Ma), the waxing and
waning of glaciers, and the concomitant landscape change in
the high Andes, has been traced by using ice core records
(Thompson et al. 2005; Thompson et al. 2013) and sedimen-
tary deposits (Baker et al. 2001; Hooghiemstra and van der
Hammen 2004). Andean glacier fluctuations over the
Pleistocene (~2.5 Ma-11,700 years B.P.) were coincident with
the onset of global glacial-interglacial cycles, with major
Andean glacial advances occurring parallel to globally cooler
glacial periods. Since the global Last Glacial Maximum
(LGM, c. 21,000 years B.P., Hughes and Gibbard (2015)), a
more detailed understanding of changes in the tropical Andean
glaciers is possible due to greater abundance of preserved fea-
tures and records (Abbott et al. 2003; Valencia et al. 2018).
For example, since the maximum glacier extent during the
Little Ice Age (LIA) that occurred between the mid-17th and
early 18th centuries, glaciers have consistently retreated over
the region. However, the exact timing of the maximum LIA
glacier extent during this period depends on the mountain
range, and it is only known for a limited number of well-
studied locations in Bolivia (Rabatel et al. 2008; Jomelli
et al. 2011), Peru (Solomina et al. 2007; Emmer 2017),
Ecuador (Jomelli et al. 2009; Heine 2011), and Colombia
(Ceballos et al. 2008). Research indicates that the maximum
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Fig. 1 Overview of the study region between Venezuela (VEN),
Colombia (CO), Ecuador (ECU), Peru (PE) and Bolivia (BO) with a
SRTM DEM overlay of the high tropical Andes (3000-6800 m asl).
Indicated are the two case study areas: (1) Antisana volcano (Ecuador)
southeast of Quito (Q) and (2) Cordillera Vilcanota (Vilcanota-Urubamba
basis, Peru — black outline) southeast of Cusco (C)

LIA glacier extent was reached earlier in the outer tropics
(Bolivia and Peru), around the mid-seventeenth century, and
later in the inner tropics (Ecuador, Colombia, Venezuela), in
the early eighteenth century (Jomelli et al. 2009). Paleoclimatic
studies based on dating of glacier extents and simple climate-
glacier models indicate that LIA temperatures were 1-2 °C
cooler than present, and up to 3 °C cooler during the
Holocene, depending on the region (Jomelli et al. 2011).

Climate change impact during the last century

Glaciers in the tropical Andes are sensitive indicators, and
unique visible signs, of the effects of contemporary climate
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change in the region (Haeberli et al. 2007; Magrin et al. 2014).
Temperatures along the western slopes of the tropical Andes
have increased since the 1960s at a rate of 0.1-0.2 °C per
decade, while coastal regions showed reduced warming or
cooling over the past three decades (Vuille et al. 2015).
Although precipitation trends are more uncertain, an increas-
ing trend in the inner tropics and a possible decrease of pre-
cipitation in the outer and subtropical region have been de-
scribed for the 1950-1994 period (Vuille et al. 2003).

Instrumental glacier observations started in the early and
mid-twentieth century at some selected locations in the tropi-
cal Andes, and have continuously expanded over the past
decades (Francou et al. 2000). The advent of satellite remote
sensing has improved the temporal resolution and geographic
coverage of the observations. The late 1970s, the mid-1990s,
and the early 2000s were marked by strong glacier shrinkage
phases. Since the 1970s, glaciers in the tropical Andes have
lost 20 to 50% of their area (locally even more), and some
have completely disappeared (Rabatel et al. 2012; Braun and
Bezada 2013; Salzmann et al. 2013; Schauwecker et al. 2014;
Morén-Tejeda et al. 2018). During the same period, glacier
mass balances have been consistently negative, ranging from
around — 0.5 to — 1.5 m annual water equivalent on average
(Rabatel et al. 2013; Vuille et al. 2018). As such, glacier
shrinkage in the tropical Andes has been more pronounced
than the global average, and is consistently and robustly relat-
ed to increasing temperatures (Vuille et al. 2018) and a high
sensitivity to changes in air humidity (Kaser 1999).

Parallel to glacier shrinkage, new lakes have formed and
existing ones have grown (see case study sections). For exam-
ple, in the Vilcanota-Urubamba basin (VUB) in Peru, lakes
have expanded by 16% in area and by 18% in number (84 new
lakes) over the past 28 years (Drenkhan et al. 2018).

Future climate change projections

Projections of future glacier shrinkage are relatively scarce for
the tropical Andes. Some studies have used simple trend ex-
trapolations of glacier area loss rates (Peduzzi et al. 2010).
Others have applied projections of future glacier equilibrium
line altitudes (ELA) and glacier thickness assessments to esti-
mate the pace and timing of glacier extinction. In general, it is
thought that glaciers below 5400 m asl and small in extent are
likely to disappear in the coming decades (Rabatel et al. 2013;
Rabatel et al. 2018). Freezing level heights derived from
Coupled Model Intercomparison Project 5 (CMIP5) climate
models illustrate the important difference of the impact of low
and high greenhouse gas emission scenarios on future glacier
extents in the Cordillera Blanca and Vilcanota in northern and
southern Peru, respectively (Schauwecker et al. 2017). For
instance, a low-emission scenario (RCP 2.6) would translate
in a loss of ca. 50% of glacier extent by the end of the twenty-
first century as compared to current values, and an almost
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complete loss of glaciers in case of a high-emission scenario
(RCP 8.5), associated with a 1-2 °C and a 5—6 °C temperature
increase, respectively, above the 1976-2005 period
(Schauwecker et al. 2017). Similar conclusions were reached
when analyzing the potential future ELA rise for glaciers in
Bolivia, Peru, and Ecuador, showing that glaciers in the inner
tropics are likely to be most affected due to smaller size and
lower maximum elevation (Vuille et al. 2018). Application of
more sophisticated, physically based glacier models is partic-
ularly rare but available for Zongo glacier in Bolivia, indicat-
ing a projected volume loss of 40 and 89% for RCP 2.6 and
RCP 8.5, respectively, by the end of the century as compared
t0 2000 (Réveillet et al. 2015). Frans et al. (2015) projected an
ice loss of 81% for the same glacier by the end of the century,
implying a dry season discharge reduction of 57%.

The decisive role of future emission pathways on the
twenty-first century glacier extent could also extend to eco-
system and landscape transformations, particularly in the sea-
sonal dry parts of the Andes (Peru and Bolivia). For instance,
high-elevation wetland ecosystems critically depend on water
from glacier melt during the dry season, and are expected to
degrade once disconnected from water resources as glaciers
vanish (see section “Integration of glacier, landscape and bi-
otic community dynamics”).

Case study 1: past, present, and future glacier
and lake changes of Antisana (Ecuador) and Vilcanota
(Peru)

Antisana (5760 m asl), located 40 km east of Ecuador’s cap-
ital, Quito, is a volcano covered by glaciers (~ 16 kmz) ex-
tending down to about 4800 m asl (Fig. 1, Fig. 2a) (Rabatel
et al. 2012). The landscapes surrounding the volcano have
been shaped by both multiple nearby eruptions of neighboring
volcanos, particularly between 4000 and 200 years B.P. (Hall
et al. 2008; Mothes and Hall 2008), and by the last glacial
period that carved deep valleys, resulting in a myriad of lakes
and extensive wetlands, intermingled on a complex topogra-
phy (Schubert and Clapperton 1990; Jomelli et al. 2009).
Scarce vegetation cover near the snow line (>4600 m asl)
on glacial moraines, and on rocky and sandy slopes, alternates
with wind-dispersed species of the Asteraceae family growing
in less exposed crevices and rock fissures (Sklenaf et al.
2016). There is no distinct dry period, although about 70%
of the annual precipitation falls between February to June, and
September to November, with a total amount of 700 to
1300 mm/year along an altitudinal gradient of 3930 to
4850 m asl (Manciati et al. 2014). Antisana is also strongly
affected by inter-annual climate variation related to El Niflo
Southern Oscillation (ENSO), with negative glacier mass bal-
ance trends during El Niflo (Vuille et al. 2008a). Between
1979 and 2007, glaciers on Antisana lost 33% of their surface
area, with an increased rate of loss since the early 1990s
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Fig. 2 Glacier, lake, and
landscape features including
potential future glacier extent
(RCP 8.5 scenario, for 2050
(2031-2060) colored in cyan, for
2100 (2071-2100) colored in
turquoise) and lake areas (blue
polygons) for (a) Antisana glacier
(0.48° S, 78.14° W, 5704 m asl)
and (b) Cordillera Vilcanota (clip,
13.79° S, 71.00 W, 6384 m asl)

Glaciers
(21 00)/

FUtUre
lakes

Plant colonization
fronts

Wetlands

(Rabatel et al. 2012). The paramos and wetlands surrounding
the Antisana volcano are part of an important protected area
for both ecosystem conservation and services, supplying
around one third of Quito’s drinking water (Vergara et al.
20009).

The Cordillera Vilcanota (CV) is located in southern Peru,
some 100 km southeast of the city of Cusco and rising up to
6384 m asl (Fig. 1, Fig. 2b). With about 240 km?, it covers the
second largest tropical glacier area worldwide. Climatically,
the CV forms part of the outer tropics at the northwestern part
of the Altiplano region, which is characterized by a distinct

Glacier-fed

4¢——— Peat bogs

Plant colonizatio
fropts™ .~

New glacial”
wetlands

\Peat N R

dry season (May to September) and a wet season (October to
April), when moisture from the Amazon basin and convective
storms can generate substantial precipitation (Garreaud et al.
2003). Interannually, ENSO exerts an important role on pre-
cipitation and temperature and thus on glacier mass balance
(Vuille et al. 2008a; Perry et al. 2017). Being a remote and
relatively pristine region, CV represents a primary site for
observation of bio-physically changing environments.
Glacier fluctuations and recession over the past millennia
gave rise to landscape and ecosystem evolution. For instance,
in the northwestern Ausangate area of the CV, glaciers

stream
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between 41,500 and 16,600 years B.P. reached about 8 km
further downstream than modern glacier extents (Mark et al.
2002). Around 1600, probably a LIA maximum, glaciers still
extended around 2 km further downstream from the modern
ice limit. Ice cores collected from the Quelccaya Ice Cap in-
dicate that the recent warming in the region is unprecedented
in the last several thousand years (Thompson et al. 2006). In
modern periods, the glaciers of the CV lost 48% of their extent
since the 1960s (Drenkhan et al. 2018; INAIGEM 2018).

Glacier shrinkage, formation of new lakes, landscapes, and
ecosystems on Antisana and in the CV will continue in the
future, but the magnitude of landscape transformation and
ecosystem affection will depend on the level of anthropogenic
emissions. The wet season freezing line has been found to be a
reasonable indicator for the lower altitude limit of tropical
glaciers (Schauwecker et al. 2017). For Antisana, based on a
present freezing line at 5100 m asl (Basantes-Serrano et al.
2016), CMIP5 climate models reveal a potential glacier area
loss of 72% and 98% for RCP 2.6 and RCP 8.5, respectively
(Fig. 2a, Table Sla). For the CV, multi-ensemble CMIP5
models indicate a median increase of the freezing line in the
wet season of 230 m and 850 m for the RCP 2.6 and RCP 8.5
emission scenarios, respectively (Schauwecker et al. 2017).
This translates into a glacier area reduction of 60% and 97%
for RCP 2.6 and RCP 8.5, respectively, by the end of the
century as compared to present values (Fig. 2b, Table S1b;
Drenkhan et al. (2018)). Therefore, an important conclusion is
that the high-emission scenarios imply a virtually complete
loss of glaciers while low-emission pathways could preserve
a substantial amount of glacier ice within this century.

As glaciers further recede in the future, new lakes can
form in the next decades. Potential lake formation sites
can be simulated using empirical parameterization models,
calculating glacier ice thickness based on geometric charac-
teristics and glacier flow considerations, and thus the loca-
tion of topographic depressions at the glacier bed
(Linsbauer et al. 2012; Colonia et al. 2017). For Antisana,
atotal of 10 lakes could develop under both the RCP 2.6 and
RCP 8.5 scenarios until 2050, with a total area (volume) of
0.1 km? (3.5 Mm?; Fig. 3a). For the VUB, 14 (RCP 2.6) to
16 (RCP 8.5) lakes could develop until 2050 and 14 (RCP
2.6)t0 20 (RCP 8.5) lakes until 2100 (Drenkhan et al. 2018),
with total area (volume) of 0.9 km? (32.4 Mm®) for RCP 2.6
and 1.6 km? (41.4 Mm?®) for RCP 8.5 until the end of the
century (Fig. 3b).

These new lakes, fed by glacial meltwater, form new land-
scapes, represent new aquatic environments, and may become
relevant for downstream ecosystems and human populations
as glaciers further retreat. Glacier contribution to river
streamflow (for VUB in headwaters of the dry season current-
ly ~25%) is expected to be substantially reduced within the
next decades and be negligible until the end of this century (~
0-3% for VUB; Drenkhan et al. (2019)).
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New lakes could act as potential dry season buffers for
dwindling water resources, freshwater biota (Cauvy-Fraunié
et al. 2015), and carbon stocks and fluxes (Hribljan et al.
2016). Additionally, ecological studies have documented veg-
etation shifts and species range expansions (e.g., for anuran
species in the CV, Seimon et al. 2017, see section 3).
However, the new lakes will not replace the water resources
lost by vanishing glaciers. Furthermore, in combination with
over-steepened ice, rocks and moraines, permafrost degrada-
tion, and de-buttressed slopes that can produce landslides into
the lakes, downstream populations may be threatened by dev-
astating outburst floods from these lakes (Colonia et al. 2017;
Haeberli et al. 2017). In conclusion, our case studies suggest
that landscapes and high Andean ecosystems will be strongly
transformed with likely range shifts but also risk of extinction,
as a result of twenty-first century glacier shrinkage, and hence
emission pathways.

Climate change and glacier dynamics effects
on highland communities, ecosystems,
and landscapes

Analyzing successional dynamics is key for interpreting the
effects of global change on landscapes, ecosystems, and alpine
biotas (Zimmer et al. 2018). Landscape transformation and
ecosystem modifications in alpine regions can result from
changes induced by (i) new environmental conditions as a
result of volcanic activity or glacier retreat (primary succes-
sion); (ii) disturbances linked with mass movements or land-
use change (secondary succession); and (iii) short-term cli-
matic variability and long-term climate change (Gray et al.
1987; Walker and del Moral 2003). These changes involve
different underlying mechanisms and can interact in complex
ways.

Several approaches have been used to analyze landscape
transformations and ecosystem change in the high tropical
Andes. Paleoecological studies provide a long-term perspec-
tive, particularly on climate-vegetation links after the LGM
(e.g., van der Hammen and Cleef (1986); Flantua and
Hooghiemstra (2018a)). A second approach compares sites
that represent different stages in the process of ecosystem
development (i.e., synchronic approach or space-for-time sub-
stitution). These studies compare communities along eleva-
tion gradients (e.g., Sklenat and Balslev (2005); Sudrez et al.
(2015)) or use explicit chronosequences, when dates after dis-
turbance or glacier retreat are known for different locations
(Sarmiento et al. 2003; Sklenaf et al. 2010; Zimmer et al.
2018). A third, less common alternative, uses multi-temporal
analyses of remote images or repeated surveys of the same
sites (diachronic approach), when long-term information is
available (e.g., (Morueta-Holme et al. 2015; Moret et al.
2016; Dangles et al. 2017; Seimon et al. 2017)).
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Fig. 3 Ice thickness distribution
and bedrock overdeepenings with
potential sites for developing
lakes (white polygons with red
outlines) modeled with GlabTop
for (a) Antisana glacier (0.48° S,
78.14° W, 5704 m asl) and (b)
Cordillera Vilcanota (clip, 13.79°
S, 71.00° W, 6384 m asl). Current
(2016, 2017) glacier extent was
computed with the Normalized
Difference Snow Index (NDSI)
using Sentinel-2 imagery. Future
(2050/2100) glacier outline
scenarios (RCP 2.6 in gray colors,
RCP 8.5 in white and black) are
estimated with a Freezing Level
Height (FLH) approach following
Schauwecker et al. 2017. For
more details on the methods used
here see, e.g., Drenkhan et al.
2018; Linsbauer et al. 2012;
Schauwecker et al., 2017. Note:
ice thickness distribution is
represented by a relative color
scheme with e.g. red color
representing larger depth values
for Cordillera Vilcanota

[ Future lakes (GlabTop)

[ Future glaciers 2100 (RCP8.5)
) Future glaciers 2100 (RCP2.6)
Future glaciers 2050 (RCP8.5)
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Paleoecological studies

High-Andean landscapes underwent a series of transformation
related to global glacial-interglacial cycles (van der Hammen
and Cleef 1986; Felde et al. 2016). During colder global glacial
periods, air temperature in the Andes was as much as 6-7 °C
lower than modern (Van Der Hammen 1974; Bush et al. 2004;
Cardenas et al. 2011) and precipitation regimes varied greatly
(Mosblech et al. 2012). During the LGM, the treeline
descended between 1200 and 1500 m with the associated ex-
pansion of the alpine zone (Van Der Hammen 1974;
Hooghiemstra and Cleef 1995; Moscol Olivera and
Hooghiemstra 2010). Vegetation in plant communities occurred

together with the glacier expansion-retreat (van der Hammen
and Cleef 1986; Hooghiemstra and Cleef 1995). Species range
expansion-contraction on an individual level resulted in the
formation-dissolution of different plant communities through
time; this process of recombination over the last c¢. 21,000 years
ultimately produced the present-day communities (Nolan et al.
2018).

The glacial-interglacial cycles likely produced a high fre-
quency of Andean speciation events (Rangel et al. 2018),
which have been linked to changes in alpine extent
(Madrifian et al. 2013; Flantua et al. 2014). During glacial
periods, the area occupied by alpine vegetation expanded
and many of the now “isolated paramo islands” became
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functionally connected (Hooghiemstra et al. 2006; Flantua
and Hooghiemstra 2018b) allowing a rapid diversification
from the local Neotropical alpine flora (Cleef 1979; von
Hagen and Kadereit 2001; Bell and Donoghue 2005;
Hughes and Eastwood 2006). These adaptive radiation events
indicate the capacity of alpine plant species to colonize and
adapt to the areas exposed after the contraction of glaciers.
Thus, we hypothesize that above 4600 m asl, present-day
high-Andean plant communities’ composition is the result of
the last 10,000 years of plant interactions along with environ-
mental filtering. Today, high tropical alpine floras are domi-
nated by a diverse array of genera from different biogeograph-
ic origins with a prevalence of puna and paramo endemics,
tropical Andean alpine, and tropical montane species, which
may be a reflection of the landscape dynamics and rapid di-
versification (Sklenaf et al. 2011; Cuesta et al. under review).
Since the LGM, landscape formation and ecosystem devel-
opment in the Andes varied latitudinally depending on the
regional climate and glacial dynamics (Bush and Gosling
2012). Regional variation can be illustrated through case stud-
ies from a latitudinal gradient in the Andes. In Bolivia, around
18,000 years ago, a lake formed at Khomer Kotcha (4153 m
asl, 17° 61.514 S; Williams et al. (2011)). Immediately post-
formation, the fossil pollen record indicates the presences of
Polylepis woodland in the area, albeit in low abundance, sug-
gesting that these trees were able to persist locally during gla-
cial expansion allowing for rapid post-glacial colonization. In
Peru, at Laguna Chochos (3285 m asl, 7° 38.175° S), the in-
ception of the lake indicates glacier shrinkage commenced
17,000 years ago (Bush et al. 2005). Initially, local vegetation
abundance was low (low pollen concentrations) with grasses
and Dryopteris appearing early in the local signal (after
14,400 years ago); the arrival of woodland elements in the
region proceeded gradually until c. 6100 years ago, when
Polylepis likely established locally. In Colombia at Laguna
La Cocha (2780 m asl; 1° 6 N), the first sediments were
deposited c. 14,000 years ago; the initial vegetation was dom-
inated by Poaceae and Asteraceae and gradually shifted to-
wards a woodier component over the next 2000 years
(Gonzalez-Carranza et al. 2012). On shorter timescales, in the
Ecuadorian Andes (0° 7° N), Villota et al. (2017) reported that
paramo grassland vegetation has been the main vegetation type
at 3748 m asl in the last ca. 3400 years, implying that during
the last three millennia, cool, and moist conditions prevailed.

Comparative gradient analyses

Changes in vegetation structure along environmental gradi-
ents can be analyzed in terms of (a) alpha diversity, corre-
sponding to species richness and composition and patterns
of relative abundance within a given community; and (b) beta-
diversity, which refers to changes in species composition and
abundance between communities along environmental

@ Springer

gradients in a landscape (Huston 1994; Colwell 2009). The
available studies of vegetation change along elevation gradi-
ents in the high Andes indicate a general decrease in alpha
diversity of vascular plants and an increase in community
turnover (i.e., beta-diversity) with higher elevation, which
could be the combined effect of limiting abiotic conditions
and recent community development since glacier retreat
(Cleef 1981; Sklenar and Ramsay 2001; Sklenaf and Balslev
2005; Cuesta et al. 2017). Ongoing glacier retreat combined
with increased climate warming are forcing species upward
migration, and are already modifying species alpha diversity
and plant community composition along environmental gra-
dients in the high-Andes (Seimon et al. 2017; Carilla et al.
2018). The establishment of plants seems to depend more on
finding local favorable conditions associated with rocky out-
crops at the highest periglacial habitat than in lower elevations
(Suérez et al. 2015). Facilitation mechanisms provided by
nurse-plants (i.e., cushion plants, shrubs), which can modify
local conditions and provide more favorable habitat for plant
colonization and establishment, also increase towards the
highest periglacial areas (Anthelme et al. 2012; Caceres
et al. 2015; Anthelme et al. 2017; Hupp et al. 2017).

Further, diversity patterns in wetland ecosystems in the
Bolivian Andes indicate a decrease in plant community beta-
diversity towards higher elevations (Loza Herrera et al. 2015).
Yet, in primary succession due to volcanic eruptions, zonal
plant communities show the opposite trend, where beta-diver-
sity and vegetation patchiness is higher towards the top of the
gradient (Sklenat 2006; Suarez et al. 2015).

Comparative analyses of glacier-fed river systems in the
Ecuadorian Andes have also found a decrease with elevation
in the species richness of aquatic macroinvertebrates, which
play a key role in organic matter decomposition and as food
sources for vertebrates (Jacobsen et al. 2012; Cauvy-Fraunié
et al. 2014). However, these studies found a hump-shaped
relationship between richness and the percent of glacier
cover/glacial flood intensity in the studied catchments
(GCC). Results suggest that a complete disappearance of gla-
ciers from catchments would result in the reduction of the
local and regional diversity of macroinvertebrates, particularly
because of the loss of specialists adapted to the harsh condi-
tions of glacier-fed streams (e.g., low channel stability and
temperatures, high turbidity). Further support for these con-
clusions has been derived from a careful experimental study in
which glacier outflows were diverted, and the dynamics of the
aquatic invertebrate communities monitored for four consec-
utive years (Cauvy-Fraunié et al. 2016).

Synchronic chonosequence studies of vegetation
dynamics

Long-fallow agriculture for the production of crops such as
potatoes and cereals has been extensively practiced for
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centuries in the alpine habitats of the tropical Andes, integrat-
ing agricultural technologies developed by native populations
with those introduced by Europeans after the conquest
(Sarmiento et al. 1993; Pestalozzi 2000). Long-fallow systems
have provided a unique opportunity to study soil and vegeta-
tion regeneration during the fallow using a chronosequence
approach (Sarmiento et al. 2003; Ortufio et al. 2006; Bueno
et al. 2015). These studies report relatively fast vegetation re-
generation rates after land abandonment (with estimates of
30 years for attaining a community structure similar to the
reference ecosystem), except in semi-arid areas subjected to
centuries of degradation by wheat cultivation (Sarmiento
et al. 2003; Sarmiento et al. 2015). However, explicit
chronosequence analyses of primary succession in glacier fore-
fronts or after volcanic eruptions are scarce.

Zimmer et al. (2018) studied four glacier chronosequences
in Bolivia and Peru above 4700 m asl spanning five dates in
each site from 1975 to 2013. A consistent increase in plant
richness, cover, and abundance was observed along the four
chronosequences in the direction of the oldest date (1975).
Wind-dispersed plants (e.g. Poaceae, Asteraceae) were over-
represented at the study sites when compared to the regional
flora, while plants dispersed by animals represented only 0—
5% of the recorded species but with higher dispersal distances
(Melcher et al. 2000). There was a clear shift in abundance
from ruderal to stress-tolerant species from the youngest site
(2013) towards the oldest site, which can be related with a low
abundance of nurse plants during the earliest successional
stages of the chronosequence. Yet, Zimmer et al. (2018) also
reported that positive spatial associations of colonizing plants
with superficial rocks (see also Suarez et al. (2015) and bio-
logical soil crusts were more frequent than associations with
cushion and forb nurses. Hence, both dispersal limitation and
a low effectiveness of nurse plants suggest that many species
affected by rapid current climate change could face barriers for
upward migration (i.e., migration time-lag) into recently de-
glaciated areas. Moreover, we hypothesize that the unprece-
dented warming rate in the high tropical Andes may exacer-
bate the dispersal filter, with new plant communities being
even more dominated by anemochorous species than what
has been observed along longer post-glacial chronosequences.

The other chronosequence study on glacial primary succes-
sion involves the establishment of two transects with un-
replicated permanent plots between 4651 and 4725 m asl
(i.e., 30 to less than 7 years) in the Santa Isabel volcano,
Colombia (Cuellar 2017). Results from the baseline data indi-
cate a successional increase in species richness and cover for
lichens, mosses, and vascular plants; the latter being almost
exclusively represented by wind-dispersed grasses and herbs
(Poaceae and Asteraceae). The only species present in the
highest plots (11 or less years of succession) were the grasses
Calamagrostis recta and Poa pauciflora, which colonized
these plots even before non-vascular plants.

Sklenar et al. (2010) reconstructed primary succession on
the lower limit of the superparamo (c. 3800 m asl) in lahars of
the Cotopaxi volcano, Ecuador (with 130, 250, and 475 years
of age). Successional dynamics also showed an increase of
species richness towards the oldest lahar, although alpha di-
versity peaked at intermediate stages. Fruticose lichens were
dominant on the youngest lahar, whereas foliose lichens and
bryophytes peaked at intermediate stages. Finally, cushions
plants, prostrate herbs, and subshrubs dominated in the oldest
site. While no biological soil crusts were observed, many of
the lichen species present during early-intermediate stages had
N-fixing photobionts. This indicates they could play an im-
portant facilitation role, as have been observed in other volca-
nic primary successions, in which nitrogen usually limits pro-
ductivity (Walker and del Moral 2003).

The interactions of limited nutrients and soil development
require further investigation, given the extremely limited
information on the processes of soil development during
primary succession in the high tropical Andes. Zimmer et al.
(2018) documented an increase in fine soil fractions along
their studied chronosequences; yet, other key elements of eco-
system dynamics such as soil organic matter and nutrient ac-
cumulation remain to be explored. Nonetheless, based on the
evidence of very low rates of soil development that character-
ize glacial chronosequences in other regions (e.g., He and
Tang (2008); Barcena et al. (2011); D’Amico et al. (2014)),
we would expect this to be a key factor limiting the speed of
vegetation colonization in tropical glacier forefronts.

Despite the limited numbers of available chronosequence
studies, their findings are of outmost importance, as they
could indicate future trajectories of plant community dynam-
ics in glacier forefronts at high elevations. However, Young
et al. (2017) argues that even tough in the Cordillera Blanca,
ecological succession is occurring on surfaces exposed by
glacier recession, plant colonization is heterogeneous and sub-
ject to different biophysical constraints than glacier loss.
Hence, rates of soil development or slope instability might
limit upward expansion in cases of primary succession.
Further, plant colonization is likely to be confronted with
feedbacks from land-use dynamics that will certainly affect
ecological succession, as livestock can potentially graze near
the highest peaks.

Case study 2: long-term observation of vegetation
dynamics in high-Andean summits

The Global Observation Research Initiative in Alpine
Environments (GLORIA) is a network for long-term biodiver-
sity monitoring. The GLORIA-Andes, established in 2008, is
the longest alpine monitoring transect across the Neotropics
(4200 km), comprising 19 target zones and 75 mountain sum-
mits from Patagonia to Venezuela. It studies long-term chang-
es in plant communities associated to soil temperature and
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substrate cover patterns (Table 1). Over 1200 species of vas-
cular and non-vascular plants have been recorded across 50 of
these summits (Cuesta et al. 2017). Twelve of these summits
reach elevations between 4600 and 5498 m asl, offering a
unique opportunity to analyze vegetation dynamics in areas
probably deglaciated after the LIA (~seventeenth century);
half of these summits are located near peaks with glaciers
expected to disappear in the next few decades (Vuille et al.
2008b; Thompson et al. 2011). Analyzing plant community
structure in these summits can help us understand (1) the eco-
logical and environmental filters that influence colonization at
high elevations; and (2) which plant species and growth forms
are colonizing these areas and how do they shape the novel
communities that develop.

Environmental filters influencing plant establishment
and growth in these areas include a high frequency of freez-
ing air temperatures (mean monthly minimum tempera-
ture=—1.9+ 1.6 °C), in combination with katabatic winds
coming down from the glaciers (Almeida et al. 2013), and
water and nutrient limitations due to the incipient develop-
ment of an organic soil layer (entisols and inceptisols in the
majority of cases). The summits are covered to a large extent
by rocks and scree (associated with intense gelifraction pro-
cesses, Pérez (1995)), increasing local topographic hetero-
geneity (Table 1). Differences in microclimate due to topo-
graphic complexity can favor the presence of species with
narrow thermal niche ranges and higher thermal optima
within a given area (Graae et al. 2018). The areas covered
by superficial rocks and boulders create an interspersed set
of microhabitats in cracks, crevices, and sheltered surfaces,
which could facilitate plant colonization and effective

establishment (Suarez et al. 2015; Graae et al. 2018,;
Zimmer et al. 2018).

Despite the harsh conditions and low plant cover, we have
recorded 135 vascular plant species in the 12 summits, of
which 61 have been recorded above > 5000 m asl (Table 1).
The majority of these plants belong to the families Asteraceae
(29%) and Poaceae (24%) (see Cuesta et al. (2017)) which
mostly have adaptations to disperse by wind (anemochory)
and are able to colonize periglacial areas. The dominance of
anemochory contrasts with the lower relative importance of
animal mediated dispersal (epizoochory or endozoochory)
(Fig. S1. Supplementary Online Material), possibly due to
the limited presence of animals at high elevations (Melcher
et al. 2000). These patterns are consistent with the post degla-
ciation plant colonization processes documented through
chronosequence studies in Bolivia, Peru, and Colombia
(Cuellar 2017; Zimmer et al. 2018).

Cushions and grasses show the highest average cover
across the 12 summits (Fig. 4). The fact that cushions consti-
tute a dominant growth forms is interesting, as they have been
shown to act as nurse-plants by facilitating the establishment
and growth of other species in areas adjacent to some of these
summits both in paramos (Antisana and La Culata, see
Anthelme et al. 2012; Hupp et al. 2017) and punas (Sajama,
Anthelme et al. 2017). Both cushions and grasses are repre-
sented by cryophilic species with narrow thermal ranges (14.5
+5.4 °C and 13.1 £3.4 °C, respectively) and low thermal
optima (5.2 +2.02 °C and 4.6 = 1.4 °C, respectively; (Cuesta
et al., under review)). The prevalence of these thermal niche
traits suggests a high vulnerability to warming, as many of
these species will be forced to migrate upwards to track their

Table 1 Descriptive data of the 12 highest summits of the GLORIA-Andes network (Cuesta et al. (2017))
Country  Site Summit  Elevation  Latitude Mean T°  Minimum T°® Quadrat ~ Vascular ~ Non vascular Rock Scree
(m asl) species plants plants cover cover  cover
richness  cover (%) (%) (%)
(%)
VEN CPB*  MO6 4604 8.8792 2.1 10 16.7 30.45 40.87  38.65
ECU ANT* CGL 4936 —0.4804 0.4 -0.5 3 22 1 25 64
AR Cuc* ISA 4743 —26.6257 2.3 -31 26 6.8 0.9 75.9 9.5
BO SAJ* JAS 4931 —18.1553 1 -3.1 19 4 2.5 72.9 9.7
PE SIB* PUM 4960 —13.835 1.8 -1.5 42 34.2 0 1.5 4.8
BO APL*  MIT 5050 -15.0202 1.6 -1.1 12 0.9 1.1 6.1 83.9
BO TUC* PAT 5058 -16.2087 1.6 -12 4 0.3 1.6 17.9 74.4
BO APL*  MOR 5195 -15.0148 09 -1.8 1 0.1 0.2 0.2 97.4
PE SIB* RIT 5250 —13.766 0.1 =31 48 18.2 422 64.7 2.5
PE SIB* ORQ 5320 —13.761 -02 -34 4 2.9 0.4 354 25.8
BO TUC* SAL 5325 -16.2373 0.6 =51 0 0 214 74.7 48
PE SIB* YUR 5498 —13.767 -14 —45 2 0.3 0 94.1 4.1

Cover percentage of vascular plants and other substrates is the mean of the cover in the plots present in each summit. *stands for Paramo summits

whereas + relates to Puna summits
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Fig.4 Mean cover of plant growth forms in the 12 highest summits of the
GLORIA-Andes network (Cuesta et al. 2017). Mean cover was
calculated as the sum of the cover of all species of each growth form,
averaged across the sixteen 1 x 1 m permanent plots present in each
summit. The bars represent the standard error

thermal optima, suffering range contractions due to topo-
graphically constrained upward displacement, as their distri-
butions would be usually centered near upper mountain areas,
as reported for Europe (Pauli et al. 2012).

The GLORIA-Andes network of permanent plots consti-
tutes a unique platform for comparative studies of the dynamic
responses of vegetation along the wide elevation and latitudi-
nal gradients that characterize the Andean chain, with many
sites having recently completed a first or second resampling
campaign (e.g., Carilla et al. (2018)).

Integration of glacier, landscape, and biotic
community dynamics

The tropical Andes constitute a unique scenario for the study
of the effects of climate and glacier change globally. They are
the largest, most diverse, and populated tropical alpine region
in the world (Llambi and Cuesta 2014). Additionally, the
high-Andes harbors 99% of the remaining tropical glaciers
in the world (Kaser 1999) with considerable regional differ-
ences. The northern section encompasses only 9% of the total
remaining glacier extent, whereas the central Andes contains
the remaining 91%, providing opportunities for comparative
research. The combination of increased habitat heterogeneity
along ample environmental gradients (Kattan et al. 2004;
Hillyer and Silman 2010), increased warming rates (0.4 °C/
decade; Vuille et al. (2003), and unique characteristics of cold
tropical climates (e.g., large daily thermal amplitudes,
moderate seasonal variations; see Cuesta et al. under review)
poses particularly challenging conditions for vegetation and
soil development after glacial retreat. Moreover, the outstand-
ing species, functional (e.g., plant growth-forms) and

ecosystem diversity of the region, could result in unique path-
ways of primary succession.

Climate niche models have projected an upward range dis-
placement of tropical Andean ecosystems (Tovar et al. 2013)
and species (Ramirez-Villegas et al. 2014) as a response to
climate change, assuming species located at the treeline are
able to colonize alpine habitats and are able to track their
climatic niches (Feeley and Silman 2010; Rehm and Feeley
2015). For species restricted to high elevations, upward range
displacement is followed by a contraction of their ranges as a
result of the conical or diamond shape of most mountain tops
(Lamprecht et al. 2018). The few cases were long-term re-
cords of species distributions in the Andes are available indi-
cate warming-driven dynamics are already occurring, as evi-
denced by upward migration reported for alpine vascular
plants (Morueta-Holme et al. 2015), Carabidae beetles
(Moret et al. 2016), and amphibians (Seimon et al. 2007).

As tropical Andean glaciers shrink, new surface areas be-
come exposed and landscape transformation through the de-
velopment of new ecosystems (e.g., glacial ponds) and the
appearance of novel plant communities can occur. In the
Vilcanota range (Peru), three amphibian species have colo-
nized newly formed ponds in a recently deglaciated corridor
at 5200-5400 m asl (Seimon et al. 2017). The observed range
expansion reveals dynamic landscape changes, including on-
going rapid deglaciation (18.4 m/year widening of a migration
corridor between retreating glaciers from 2005 to 2015), new
pond formation, and changes in vegetation and amphibian
habitats (from Distichia cushion bogs to tussock grasses).
However, amphibians are dependent on cushion peat bogs,
which in turn critically depend on glacial runoff, particularly
during the dry season. Glacier shrinkage has been associated
with the drying of some of these cushion bogs and their re-
placement by tussock grasses, threatening long-term persis-
tence of these “new” amphibian community (complicated by
changes in amphibian fungal disease dynamics) and revealing
the complex links between glacier dynamics, vegetation suc-
cession, and animal populations dynamics (Seimon et al.
2017). Morueta-Holme et al. (2015) report an average upward
shift of 675 m in the distribution of several plant species in
Chimborazo glacier (Ecuador) since 1802, corresponding to an
average shift per decade of 32 m. Glacier coverage has
retreated from 4814 m measured by Von Humboldt (Von
Humboldt 1807) to a mean location of 5270 (+260 m) in
2013 for the glaciers on the south and east side of the volcano
(La Frenierre and Mark 2017). Between 1986 and 2013,
Chimborazo experienced a 21% (£9%) reduction in ice sur-
face area and a 180-m increase in the mean minimum elevation
of non-debris-covered ice, implying that at least the last 150 m
of plants upward expansion document by Morueta-Holme
et al. (2015) occurred approximately in the last 30 years.

Further, warming temperatures and glacier shrinkage are
creating new empty niches that could be filled by alpine species
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through dispersal events (Steinbauer et al. 2018). Overall, the
handful diachronic studies available indicate that under
warming conditions species are being forced to migrate up-
wards. Two possible outcomes of species range displacement
include (a) upward displacement of more warm-demanding
plants that could eventually outcompete cold-adapted species,
and (b) species with a distribution centered near mountain tops
would be more prone to suffer range contractions due to a
topographically constrained upward displacement, as docu-
mented in other mountain systems (Lamprecht et al. 2018;
Steinbauer et al. 2018). However, species centered near moun-
tain tops are likely to be the first to colonize the new available
habitats on deglaciated mountain areas as they showed lower
thermal optima (Cuesta et al. under review). The combination
of both scenarios suggests the conformation of new communi-
ties with probably marked differences to present-day ones.
Chronosequence studies of plant primary succession indicate
that, as in other alpine areas (Davey et al. 2015; Cazzolla Gatti
et al. 2018), pioneer species include lichens, mosses, grasses,
and non-graminoid herbs (particularly Asteraceae), with wind-
dispersed species being especially overrepresented (Suarez
etal. 2015; Zimmer et al. 2018). Yet, further studies are needed
to compare migration and colonization rates across the latitudi-
nal gradient of the Andean chain. So far, the available studies
suggest that colonization depends on the availability of suitable
microsites, which can include abiotic features such as rocky
outcrops and facilitative interactions with biological soil crusts
and nurse plants. Species persistence in the new colonized

habitats will critically depend on their ability to adapt to the
dynamic new communities and biotic interactions (e.g., from
competitors, herbivores, pests) and landscapes evolving at the
highest elevations (Fig. 5).

Some of the most prominent new landscape elements asso-
ciated with glacier shrinkage are lakes that typically form in
topographic depressions eroded by the glaciers (Linsbauer
et al. 2012). Within the tropical Andes, high-elevation areas in
Peru have been particularly exposed to glacier lake formation, a
process that resulted in thousands of new lakes (Emmer et al.
2016). Notably, the majority of these lakes are small (< 1 ha) and
50% of them are located above 4600 m asl and were probably
formed in the last 3040 years. Similarly, wetlands in the
Eastern Andean flank in Bolivia have increased by 300% in
surface area and by 218% in wetland numbers in a 30-year
period (1984-2011), mainly related to the appearance of wet
grassland patches during the wetter years (Dangles et al. (2017).

A key aspect of these landscape transformations is whether
these new small lakes can form a permanent ecosystem in the
mid-term, particularly when glacial fed streams are gone and a
prolonged dryer season is expected (Vuille et al. 2018). In the
Cordillera Vilcanota (Peru), as glacier areas have decreased,
77% of the lakes connected to glacial watersheds have either
remained stable or shown a roughly synchronous increase in
lake area, while 42% of lakes not connected to glacial water-
sheds have declined in area (Hanshaw and Bookhagen 2014).
Therefore, wetland connectivity seems to provide resilience to
these systems. Additionally, analyzing successional vegetation
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dynamics is crucial for predicting the long-term persistence of
the newly formed wetlands. Cushion plants, such as Distichia
spp., are key for regulating carbon accumulation and water
retention in wetlands of the high Andes (Benavides 2014;
Hribljan et al. 2016), allowing the persistence of other wetland
specialist plants. However, Dangles et al. (2017) found that the
increase in wetland cover mainly concerned small areas dom-
inated by grassland species (Poaceae) instead of cushion-
forming species, which requires several decades to colonize
new habitats in a changing environment (Anthelme et al.
2014).

Furthermore, landscape changes can result from shifting
hydrological processes and, in turn, feedbacks through altered
evapotranspiration, runoff, and water storage can further in-
fluence wetlands persistence and landscape structure (Polk
et al. 2017). For example, both increase and decrease in wet-
land areas have been documented between 1987-1999 and
1999-2000 respectively in the Cordillera Blanca, Peru (Polk
2016). Changes in flow regimes have also affected the wet-
land area in the upper watershed of the Santa River, Peru
(Baraer et al. 2012). Here, satellite data suggest that glacier
area decreased by 0.81% annually between 1990 and 2009.
After an initial phase in which glacier melt resulted in in-
creased water flows, glacier-fed streams now exhibit decreas-
ing annual and dry season discharge. Changes in wetland area
are reflecting the changes in flow, following the peak water
curve, but with a clear time lag. Once the glaciers are gone, the
discharge will likely be lower than today, at least during the
dry season (Polk et al. 2017). The expected water shortage
could have negative feedback effects on the new wetland sys-
tems; effects may include wetland fragmentation, attrition,
and dissection. These modifications would likely result in as-
sociated ecological effects including loss of species adapted to
or dependent on water saturated substrates and loss of soil
organic carbon (see Benavides et al. (2013)).

The evidence reviewed here indicates that landscape and
ecosystem dynamics of the high Andes, including glaciated
areas, biotic communities, soil development, and hydrological
responses, are modulated by physiographic factors (Fig. 5)
that change along environmental gradients at different spatial
scales, including ecosystem changes with latitude (e.g.,
paramos and punas), geology (i.e., from volcanic to non-
volcanic regions), geomorphology (formation of extensive
wetlands), elevation (e.g., increased rates of warming at high
altitudes), slope/aspect, and microtopographic features (e.g.,
depressions and rock crevices). Additionally, the available lit-
erature suggests that understanding ecosystem dynamics re-
quires a comprehensive analysis of the biotic mechanisms of
community assembly at various scales (Lortie et al. 2004),
including (i) macro biogeographic and colonization filters
(e.g., dispersal limitations into high deglaciated areas); (ii)
adaptive responses of different functional groups to the micro-
climatic, hydrological or edaphic gradients at the site scale;

and (iii) the effects of species interactions, both positive (e.g.,
changes in the effectiveness of facilitation, seed dispersal or
pollination at high elevations) and negative (e.g., increased
effects of competition, herbivory, or pests modulated by a
changing climate). Hence, both physiographic gradients and
biotic processes can act as filters that modulate the effects of
global change on high Andean landscapes and ecosystem dy-
namics, including community development in deglaciated
forefronts. In turn, these processes exert a great influence on
the provision of ecosystem services and ultimately, changes in
human welfare for Andean populations (Fig. 5).

Conclusions: future challenges
and opportunities

In this review, we related observed and projected changes in
climate, with the documented glaciological, hydrological, and
biotic responses of high tropical Andean ecosystems and land-
scapes. We explored the links between global change (i.e.,
interactions between climate and land-use change) and their
modulation by physiographic and biotic assembly processes
that operate at different spatial scales, highlighting examples
of the main processes that can operate at each scale (Fig. 5).
We propose that an explicit analysis of the synergies and in-
teractions between these abiotic and biotic modulating process
could contribute to the development of an analytical integrated
framework and interdisciplinary research agenda.

Overall, the documented evidence (e.g., Dangles et al.
(2017)) and future scenarios of glacier shrinkage (e.g.,
Drenkhan et al. (2018)) indicate that in areas with important
glacier cover, glacier loss can significantly modify the land-
scape through (i) formation of new lakes together with the
fragmentation and drying/attrition of former lakes; (ii) alter-
ation of hydrological dynamics in glacier-fed streams and high
Andean wetlands, leading to vegetation modification and
changes in community composition and species interactions
(e.g., on aquatic macroinvertebrates); (iii) species colonization
of new deglaciated areas along with species upward migra-
tion; (iv) shifts in the balance between diverse cushion-
dominated peat bogs and drier grass-dominated wetlands;
and (v) eventual loss of alpine biota adapted to waterlogged
conditions.

Glacier shrinkage, landscape transformation, and ecosys-
tem modifications in the Andes can in turn affect critical eco-
system services for a large number of rural and urban popula-
tion centers (Mark et al. 2017), including water provision and
streamflow regulation (Mark 2008), increased risks of
flooding or lake outbursts, degradation of grazing grounds
for domestic cattle (particularly Andean camelids, Duchicela
et al. (2019)), and loss of carbon accumulation capacity in
soils (Benavides et al. 2013). Furthermore, the combined ef-
fect of climate change and land-use stressors on Andean
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wetlands has the potential to reduce soil water regulation ca-
pacity, increase soil erosion, and increase organic matter de-
composition (Buytaert et al. 2011; Urbina and Benavides
2015; Hribljan et al. 2016). The resulting changes to these
ecosystem functions could threaten the carbon stability of high
Andean wetlands, transforming them from a long-term sink to
sources.

The ecological and social implications of the observed and
projected changes are diverse and complex due to the fact that
coupled biophysical and social dimensions mediate and am-
plify these risks (Bury et al. 2011). Assessing the social risks
related to glacier loss and landscape transformations requires
deciphering the magnitude and diversity of these changes over
space and time, and exploring how such changes interact with
dynamic social relations and processes (Mark et al. 2017).
Thus, observed and projected changes need to be further ad-
dressed, requiring more integrated approaches from earth-
sciences fields such as climatology, glaciology, hydrology,
edaphology, different branches of ecology (from paleoecology
to ecophysiology and landscape ecology), and notably, impor-
tant contributions from and engagement with social sciences
and local stakeholders.

Important knowledge gaps could be addressed, and critical
ecological thresholds identified, to support the decision-
making processes, by comparative multi-scale studies across
the Andes, linking glacier retreat dynamics to its consequences
on biodiversity and ecosystem processes (e.g., the carbon and
water balance), combined with different land-use trajectories.
Further research efforts are specially needed to understand (i)
the links between changes in landscape structure and ecosys-
tem distribution in regions affected by climate and glacier
change (e.g., glacier-wetland-grassland interactions); (ii) the
processes of soil development in deglaciated forefronts (e.g.,
permanent plots along glacier chronosequences); and (iii) the
impacts of landscape and ecosystem change on ecosystem ser-
vices provision for rural livelihoods and Andean cities.

All of this call for integrating research efforts across the
region. Existing disciplinary observational networks such as
the GLORIA-Andes network and World Glacier Monitoring
Service need to be maintained, but could be complemented by
integrated observatories such as currently proposed under the
GEO (Group of Earth Observation) Global Network for
Observation and Information in Mountain Environments
(GEO-GNOME). In our view, this constitutes an exciting
challenge to develop a more comprehensive understanding
of the complex feedbacks between climate change, glacier
dynamics, biodiversity, ecosystem services, and socio-
economic development across the tropical Andes. An im-
proved understanding of the described linkages will be a key
contribution to conserving and managing these dynamic land-
scapes and designing better strategies for adaptation to climate
change. Sustained long-term research programs require a
more effective integration with the decision-making process
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(Lindenmayer et al. 2013). An effective research agenda, with
a strong policy formulation link, needs to be supported by (i)
an enabling environment capable to strengthening information
sharing platforms; (ii) enhanced cooperation among research
centers; (iii) capacity building of relevant stakeholders, and
(iv) active participation of government agencies and social
organizations in all phases of the research/monitoring cycle
(e.g., see IDEAM et al. (2018)).
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